Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Dis Poverty ; 5(1): 68, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485513

RESUMO

BACKGROUND: Pathogenic water dwelling protozoa such as Acanthamoeba spp., Hartmannella spp., Naegleria spp., Cryptosporidium spp. and Giardia spp. are often responsible for devastating illnesses especially in children and immunocompromised individuals, yet their presence and prevalence in certain environment in sub-Saharan Africa is still unknown to most researchers, public health officials and medical practitioners. The objective of this study was to establish the presence and prevalence of pathogenic free-living amoeba (FLA), Cryptosporidium and Giardia in Queen Elizabeth Protected Area (QEPA). METHODS: Samples were collected from communal taps and natural water sites in QEPA. Physical water parameters were measured in situ. The samples were processed to detect the presence of FLA trophozoites by xenic cultivation, Cryptosporidium oocysts by Ziehl-Neelsen stain and Giardia cysts by Zinc Sulphate floatation technique. Parasites were observed microscopically, identified, counted and recorded. For FLA, genomic DNA was extracted for amplification and sequencing. RESULTS: Both natural and tap water sources were contaminated with FLA, Cryptosporidium spp. and Giardia spp. All protozoan parasites were more abundant in the colder rainy season except for Harmannella spp. and Naegleria spp. which occurred more in the warmer months. The prevalence of all parasites was higher in tap water than in natural water samples. There was a strong negative correlation between the presence of Acanthamoeba spp., Hartmannella spp., Cryptosporidium spp. and Giardia spp. with Dissolved Oxygen (DO) (P < 0.05). The presence of Cryptosporidium spp. showed a significant positive correlation (P < 0.05) with conductivity, pH and Total Dissolved Solids (TDS); whereas the presence of Giardia spp. had only a strong positive correlation with TDS. Molecular genotyping of FLA produced 7 Acanthamoeba, 5 Echinamoeba, 2 Hartmannella, 1 Bodomorpha, 1 Nuclearia and 1 Cercomonas partial sequences. CONCLUSIONS: All water collection sites were found to be contaminated with pathogenic protozoa that could possibly be the cause of a number of silent morbidities and mortalities among rural households in QEPA. This implies that water used by communities in QEPA is of poor quality and predisposes them to a variety of protozoan infections including the FLA whose public health importance was never reported, thus necessitating adoption of proper water safety measures.


Assuntos
Amebíase/epidemiologia , Amébidos/isolamento & purificação , Criptosporidiose/epidemiologia , Cryptosporidium/isolamento & purificação , Água Potável/parasitologia , Giardia/isolamento & purificação , Giardíase/epidemiologia , Amebíase/parasitologia , Amébidos/classificação , Amébidos/genética , Criptosporidiose/parasitologia , Cryptosporidium/classificação , Cryptosporidium/genética , DNA de Protozoário/genética , Giardia/classificação , Giardia/genética , Giardíase/parasitologia , Humanos , Prevalência , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Uganda/epidemiologia
2.
Parasit Vectors ; 9: 127, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935431

RESUMO

BACKGROUND: Acanthamoeba is an emerging potentially pathogenic amoeba that has been receiving increasing attention worldwide as a reservoir and potential vector for the transmission of pathogenic bacteria. It is also associated with brain cell damage, keratitis and skin irritation in humans. Its effects are more severe in immunocompromised individuals. This study provides for the first time in Uganda, information on the prevalence and genotypes of Acanthamoeba in environmental and domestic (tap) water. METHODS: A total of 324 environmental and 84 tap water samples were collected between November 2013 and September 2014. The samples were centrifuged, cultured (Non-Nutrient agar seeded with gram-negative bacteria) and observed under a microscope. After confirmation of Acanthamoeba, genomic DNA was extracted for PCR assays by chemical lysis and purification with phenol/chloroform/isoamyl alcohol. Samples that showed the strongest positive bands (400-600 bp) were subjected to cycle sequencing. RESULTS: Among environmental and tap water samples, 107 (33 %) and 36 (42.9 %) tested positive for Acanthamoeba spp., respectively. Prevalence of Acanthamoeba from specific environmental locations was as follows; Kazinga channel banks (60.7 %), Fish landing sites (50 %), River Kyambura (39.6 %) and Kazinga mid channel (5.3 %). There was a significant difference (p = 0.001) in the prevalence of Acanthamoeba between sampling sites. The mean (Mean ± SE) occurrence of the organism was higher in Kazinga channel banks (3.44 ± 0.49) and Fish landing sites (3.08 ± 0.53). Correlation between in situ parameters and Acanthamoeba was insignificant except for the Dissolved Oxygen (mg/ML) which was negatively correlated (r = -0.231, p = 0.001) to Acanthamoeba. Six distinct partial Acanthamoeba T-genotype groups T1, T2, T4, T5, T6 and T11 were obtained. Ultimately, Acanthamoeba spp., Acanthamoeba hatchetti and Acanthamoeba polyphaga were isolated in the current study. CONCLUSIONS: There was a high prevalence of Acanthamoeba in communal piped tap and environmental water used by communities, indicating poor environmental and domestic water quality.


Assuntos
Acanthamoeba/classificação , Acanthamoeba/isolamento & purificação , Variação Genética , Água/parasitologia , Acanthamoeba/genética , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Genótipo , Microscopia , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...